目次
連続一様分布 $U(a, b)$
$\begin{align*}f(x) = \frac{1}{b-a}\quad(a \leq x \leq b)\end{align*}$
期待値:
$\begin{align*}E[X] = \frac {a + b}{2}\end{align*}$
分散:
$\begin{align*}V[X] = \frac{(b-a)^2}{12}\end{align*}$
母関数:
$\begin{align*}M(t) = E[e^{tX}] = \frac {e^{bt}-e^{at}}{(b-a)t}\end{align*}$
正規分布(ガウス分布) $N(\mu, \sigma^2)$
$\begin{align*}f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\end{align*}$
期待値:
$E[X] = \mu$
分散:
$V[X] = \sigma^2$
母関数:
$\begin{align*}M(t) = \exp(\mu t + \frac{1}{2}\sigma^2t^2)\end{align*}$
指数分布 $Exp(\lambda)$
$f(x) = \lambda e^{-\lambda x}$
期待値:
$\begin{align*}E[X] = \frac{1}{\lambda}\end{align*}$
分散:
$\begin{align*}V[X] = \frac{1}{\lambda ^2}\end{align*}$
母関数:
$\begin{align*}M(t) = \frac{\lambda}{\lambda-t}\end{align*}$
ガンマ分布 $Ga(\nu, \alpha)$
$\begin{align*}f(x) = \frac {x^{\nu-1} e^{-\frac{x}{\alpha}}}{\Gamma(\nu)\alpha^\nu}\end{align*}$
期待値:
$E[X] = \nu \alpha$
分散:
$V[X] = \nu \alpha^2$
母関数:
$M(t) = (1-\alpha t)^{-\nu}$
ベータ分布 $Be(a, b)$
$\begin{align*}f(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}\end{align*}$
期待値:
$\begin{align*}E[X] = \frac{a}{a + b}\end{align*}$
分散:
$\begin{align*}V[X] = \frac{ab}{(a + b)^2(a + b + 1)}\end{align*}$
母関数:
$\begin{align*}M(t) = 1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \prod_{m=0}^{k-1} \frac{a + m}{a + b + m}\end{align*}$
ディリクレ分布 $Dir(\alpha_1, … , \alpha_K)$
$\begin{align*}f(\boldsymbol{x}) = \frac{\Gamma(\sum_{i=1}^{K}\alpha_i)}{\prod_{i=1}^{K}\Gamma(\alpha_i)}\prod_{i=1}^{K}x_i^{\alpha_i-1}\end{align*}$
期待値:
$\begin{align*}E[X_i] = \frac{\alpha_i}{\sum_{i=1}^{K} \alpha_i}\end{align*}$
分散:
$\begin{align*}V[X_i] = \frac {\alpha _{i}\sum _{j\neq i}\alpha _{j}}{(\sum _{i=1}^{K}\alpha _{i})^{2}(1+\sum _{i=1}^{K}\alpha _{i})}\end{align*}$
共分散:
$\begin{align*}Cov[X_i, X_j] = \frac {-\alpha _{i} \alpha _{j}}{(\sum _{i=1}^{K}\alpha _{i})^{2}(1+\sum _{i=1}^{K}\alpha _{i})} \quad(i \neq j)\end{align*}$
母関数:
表現が複雑なため割愛
コーシー分布 $C(\mu, \sigma)$
$\begin{align*}f(x) = \frac{1}{\pi \sigma \left(1 + \left(\frac{x-\mu}{\sigma}\right)^2\right)}\end{align*}$
期待値:
存在しない
分散:
存在しない
母関数:
存在しない
特性関数:
$\phi(t) = \exp(it\mu-|t|\sigma)$
対数正規分布 $\Lambda(\mu, \sigma^2)$
$\begin{align*}f(x) = \frac{1}{\sqrt{2\pi\sigma^2} x}\exp\left(-\frac{(\log{x}-\mu)^2}{2\sigma^2}\right)\end{align*}$
期待値:
$\begin{align*}E[X] = \exp\left(\mu + \frac{\sigma^2}{2}\right)\end{align*}$
分散:
$V[X] = \exp(2\mu + \sigma^2)(\exp(\sigma^2)-1)$
母関数:
存在しない
特性関数:
閉じた形式での表現が困難であるため割愛
2変量正規分布 $N_2(\boldsymbol{\mu}, \Sigma)$
$\begin{align*}f(x_1, x_2) &= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left[-\frac{1}{2(1-\rho^2)}\left(\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2-2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 \right) \right]\end{align*}$
期待値:
$E[\boldsymbol{X}] = \boldsymbol{\mu}$
分散:
$V[\boldsymbol{X}] = \Sigma$
条件付き期待値:
$\begin{align*}E[X_2|X_1 = x_1] = \mu_2 + \rho\frac{\sigma_2}{\sigma_1}(x_1-\mu_1)\end{align*}$
条件付き分散:
$V[X_2|X_1 = x_1] = \sigma_2^2(1-\rho^2)$
母関数:
$\begin{align*}M(\boldsymbol{t}) = \exp\left(\boldsymbol{\mu}^\top\boldsymbol{t} + \frac{1}{2}\boldsymbol{t}^\top\Sigma\boldsymbol{t}\right)\end{align*}$
多変量正規分布 $N_p(\boldsymbol{\mu}, \Sigma)$
$\begin{align*}f(\boldsymbol{x}) = \frac{1}{(2\pi)^\frac{p}{2}(\det\Sigma)^\frac{1}{2} }\exp\left(-\frac{1}{2}(\boldsymbol{x-\mu})^\top\Sigma^{-1}(\boldsymbol{x-\mu})\right)\end{align*}$
期待値:
$E[\boldsymbol{X}] = \boldsymbol{\mu}$
分散:
$V[\boldsymbol{X}] = \Sigma$
母関数:
$\begin{align*}M(\boldsymbol{t}) = \exp\left(\boldsymbol{\mu}^\top\boldsymbol{t} + \frac{1}{2}\boldsymbol{t}^\top\Sigma\boldsymbol{t}\right)\end{align*}$